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ANALYSIS OF TURBULENT FLOW AND HEAT TRANSFER ON A FLAT PLATE

AT HIGH MACH NUMBERS WITH VARIABLE FLUID PROPERTIES l

By R. (;. I)EISSLER and A. L. LOEFFLI':R, Jr.

SUMMARY

A prerious analysis of turbulent heat transfer and

flow _qth variable fluid properties in +'mooth passages
i,s' extended to flow ocer a flat plate at high 3[ach

numbers. Velocity and temperature distributions

are calculated for a boundary layer in which the

effectx of both frictional heating and external heat

tran.ffer are appreciable. The viscosity and ther'mal

co_uluctirity are axxumed to _'ary ax a power _4f the

temperature, while the Prandtl number and specific
heat are taken a._ con,_'ta_t. Skin.friction aml heat-

tral_.ffer coeffieieT_ts are calculated and corn.pared

with the incomprexxible values. The relation be-

tween boundary-layer th.ickl_ess and dixtalme along

the plate is obtained fi)r rarimtx _llaeh _umberx,

The analytical result,s' are compared with represe_lta-

tire experimental data.

INTRODUCTION

The current importance of high-speed tlight has

caused much interest in research on (,ompressil)le

boun(/ary layers. The skin friction in high Math

number flight constihHes a large p'n'! of the total

drag. Therefore the _tccurate prediction of skin
friction is desirable for the design of high-si)eed
aircraft. Prediction of heat-transfer coefficients

in high Math mtmber tlow is also important,

because frictional i,,ating of the surfa('e ne(,essi-

tates cooling to prevent structural failures.

The prediction of laminar bt)undary h_ycrs

from the basic equations of momentum, energy,

and contimfity has reached a high state of develop-
ment. A considerable amount of analytical work

on turbulent boundary layers has also been carried

out. In the turbulent case, however, the results

of the various analyses disagree markedly because

of the different assumptions made by the various
authors. These analyses are reviewed in refer-

ences 1 to 3. The introduction of assumptions

into the treatment of turbulent boundary layers

is at present umtvoidable, since solving the prob-

lem from the instantaneous equations of momen-

tum, energy, and contimfity alone is not yet

possibh_. In some respects, however, the model

used for solving the problem might be improved.
In nearly all the analyses, the flow is divided into

a l,mfinar region, where turbulence is supposed to

t)e absent, and a fully turbulent region. The

effect, of variation of fluid prot)ert, ies on the laminar

region is generally neglected. Measurements of

turbulent velocity profiles indicate lhat consider-
able turbulent shear exists within the so-called

lamimu" layer (ref. 4), so that a more realistic
mo(M for the region close to the wall than that

used in previous amdyses is desirable.

A somewhat improved treatment of the region

close to the wail is given in referen('es 4 to 6,
wher(_ the efr(,cts of turbulence and of variable

fluid properties in this region are considered. In

the region away from the wall the yon ](_h'tn_in

similarity expression has been eonsi(h,re(l the most

r_,asonablc expression available (ref. 7). In ref-

erence 8, fully (h, veh)pe(l turbulent flow and heat

transfer in smoolh I)assages for air with variable

properties are analyzed, and the results agree well

with experimental data. The analysis is extended

to the entrance regions of passages and to high
Pt'andtl numbers in references 9 and 10, where

good agreement with experiment is again obtained.

Since the attalyses apply well to entrance regfons,

Supersedes NACA Toehnlcal Note 4262 by 12. O. Delssler and A. L. L0effler, .lr.o 1958.
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the assumt)tions mmle ill the analyses should

apply also to a compressible boundary layer.

The analysis is extended to flow and heat transfer

in a boundary layer at high Mach numbers in this

paper. (Some preliminary results were presented
ill ref. 1 I.) Tile variation of properties due both

to frictional heating and to external ileal transfer

is considered. The viscosity and thermal con-

(tuctivity arc assumed to vary as a power of thc
mlmber andtemperature, while tile Prandtl

specific heat arc taken as constant.
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SYMBOLS

eOIlStHIIt

ratio of diffusivities, _h/e
constant

tOllS ( fl ! I t

fi'ii'tion coefiieient, 2r,ffO_u_

sl)eciiic heat of ttuid at constant prcs-
Slll'O

(.onstant

exponent fi)r viscosity raft,(lion with

teml)crature , taken as 0.6S for air
constanL

enthalpy
heat-trntlsfer coefficient, q,/'(t,,,-- t,.,,)

thermal emlductivity
Xlach number ])ascd oil free-strcan_

properties and velocity u_/('yRl_

constant, 0.109

Prandtl numt)er, c,#/k

energy transfiw in y-direclion per unit

time per unit area (as (h,|ined l)y cq.
(AI4))

pel'fc('t gas constant
ll(0nohls nunfl)er based on z, xuwd_

Reynolds number based oil 0, Ouwdm

Stanton number, k,/%uw_

total temt)erature , t+ (uZ/2cp), deg al)s

total-telnperature parameter,

"' rT'/t((,s"1)c,% 1--, , ,.

static temperature, (leg abs

tenlperattlrc parameter,

(t_--t)e,r_ 1--(t/t,o)

tcmpcratua'e parameter,

off,_t)c,o_ 1--(t/tD
T w Of

u vch)eity in z-direction
t -/ -u + velocity pacanmter, u/_ r,,.p_

v velocity in y-(lirectiotl

x longitudi!!al (listanee along plate

y distan(;e perpcndi(qflar from plate

y+ wall (list aneo parameter, g _r,,,/p,_
#w/Pw

y+ lowest vahtc of y+ for which equation

for region away fi'om wall applies

a frictional-heating l)arameter, r_/2cfl _p_

fl heat-transfer parametcr, q,_r_/o_
(!p_ wT w

3' ratio of specific heats, taken as 1.400
for air

_t ttow t)oundary-htyer thickness

(_+ ttow lmundary-layer-thickncss t)aram-

(,ler, _ y"r./p.

_, thermal l_oundary-layer lhiekness

_+ thermal boun(hwy-hryer-llfickness pa-

r,,,lleter, T /;7
tz u,/P w

eddy diffusivity of momcmum

_h eddy ditfusivity of heat

temperature-recovery fat(oiL U_/2(,v

0 momcn tmn thickness,

-P (l-Y- dy
• b P_ _lr_ \ t1,6)'

0 + ItlOlllel! 1,11111-[ }lie](licss l)flFallle| er_

O_. r,ffp_

Ia u,/P w

K constant, 0.3tl

u viscosity

o density

r sh(,ar Sll'eSs, force llcr llnit, area

Sul .seril)tS :
ate i)crt aining t o adiabatic wall con(lit ions

i incomprcssil)le; constant thfid proper-
tics

w pertaining to wall

8 pertaining to edge of boundary layer
or free slream

1 pertaining to edge of wall layer

Su_)erscrJpts:
* reference

' per(at!ring to fluctuations from lime

average except in t +'
-- time-averaged value
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ANALYSIS AND DISCUSSION

BASIC EQUATIONS

The instantaneous velocilies, temi)erature and

fluid properties in the equations of momentum,

energy, and continuity can be dirt<led into mean

and fluctuating components. If time averages

are taken, tile following equations for shear

stress and energy transfer, applicable to flow in

a t)oundary layer are obtaine<l (appendix A):

T=_ _--p U'_" (1)

q------k dt +pcp _-ut_ du
dy+ _p _ (21(]y

where constant specific heat is a.ssunle(l. The

bars denote time averages, and the primes indicate

fluctuating components. Equations (1) and (2)

are the same as equations (A9) aim (.A14) in

appen<lix A if the t)nrs over the time-averaged

velocities, temperatures, and properties are

dropped. The various terms in equations (1)
and (2) may be interpreted as follows:

(l It

#_y nloleeular shear stress

--p u'v' turbulent shear stress

(It

--k (ly molecular heat transfer

o%t'v' turlmlent heat transfer

(1 tl

--u_, _ mole('ular shear work

up u'r' turlmlent shear work

Equations (1) and (2) suggest tile form of tile
turbulent transfer equations but contain the un-

known quantities u'v' and t'r', so t]mt assumptions
must 1)e made before solulions can 1)e obtained.

For making these assumi)tions it is convenient
to introduce the relations

d _t d t

=-, and

where e and e_ are the eddy difl'usivities for

moinentum and heat transfer, the vMues of which
deI)end upon the amount and kind of turlmlent

mixing at, a point. When these relations are

introduced, equations (1) and (2) t)ecome

(] 1/

,= (_,+o,)

<It , , ,,(tu
q=-(lc+pc:_) ,ly-.t_-p_, (yy (4)

The physical significance of e and e_ lies in the
fact, that et(#/p) is the ratio of turlmlent to molec-

ular shear stress (ref. 12), and th/(h'/pc_) is the
ratio of turl)ulent to nmlecular heat transfer.

Equations (3) and (4) can be written in (limension-
less form as

tl I](t

r,,, ,,_ p_ #,,,/p,,, (ly +

3

(a)

(,_)

q_=(k 1 p , )d: +

--2 a + /_ p _ (]u +

The subscripts w refer to values at y=O; that is,
at the wall. The <luantity _ is a frictional-

heating parameter that is an indication of the

variation of properties due to frictional heating,
and _ is a heat-flux parameter that is an indication

of the variation of prot)erties due to heat h'ansfer.

The 1)araineter a is always l)ositive or zero, a

value of zero eh'tracterizing low-sl)eed th)w (i.e.,

_11_--0). A zero wflue of _ refers to a vanishingly

small heat transfer or an insulated l)late. A

positive value of ¢_ indicates heating of the fluid,

while negative _ means that the fluid is l)eiug
cooled. It is sometimes convenient to write

equation (6) in the following alternative, dimen-
sionless form :

_q (k 1 p _ (tt +'q,. \z.,,rr;+E o,;;/Z) d:F

This equation is l)artieularly convenient when

fl O, for which case equation (6) be('omes indeter-
minal e.

EXPRESSIONS FOR EDDY 1)IFFUSIVITY

hi order to make practical use of equations (5)

to (7), the eddy (liffusivity _ must be evahmted

for each portion of the flow. For this purpose the
boundary l'tyer is divided into two portions termed
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the "regionawayfrom the wall" and tile "region
close to the wall."

Region away from wall.--In the region away

fronl the wall, it is assumed that tile tm'bulencc

at a point is a function mainly of local conditions--

that is, of the relative veh)eities in the vicinity of

the point (ref. 13). This is probably not a good

assunlption in the region near the edge of the

boundary layer, where eonsidonible diffusion of

the turlmlence oeeurs (ref. 14) and, in addition,
the turbulence is intermittent, tIowever, in that

outer region the velocity or temperature gradients
are so snmll with respect to these gradients nearer
the wall t]lat the error in calculated w, loeities or

tenlperalures should not be large. A Taylor series

expansion for u as a function of tr_msv(,rse dis-

tahoe, then, iudieates that • is a fulwtion of

du/dy, d2u/(ly 2, dau/dy a, and so forlh, lf, as a

lit'st approximalion, • is considered as a function
only of lhe tits( "rod second derivatives, 'rod (timen-

sional analysis is applied,

[du d2u'_ 2 \,dy/

•--• t d.' {,tw7 (s)

This expression was obtained by yon KflrnlSn and
is generally kliown as the l(:'trmfin siniihirity

hyt)othesis (vef. 7). The eonstant _ is to be deter-

mined experimentally.

Region close to wall.--In the region close to the

wall it is assumed that _ is a function (rely of

quantilies measured relative to the wall (hat is

of u and ?i." This llssuml)tion in('lud(,s, to a first

approximation, all effect or the derivative du/'(ly.

Sin(.• the flow be(,omes very nearly laminar as the

wall is al)proa('hed , t It(, first derivative al)i)roa('hes
the vahie u/!/and hence nlay be omitted, since u

a))d y already appear irl ih(' fu)wiional relalion.

By using dimensional analysis,

• - _ (u,y) -n:uy (9)

wher(, n is an ('xpe,'imental eonstanl.

Equations (St and (9) can b(, (_onsidered as

reasolmt)le first at)l)r()xinmtions for •. Whether

these approximations art, adequate or not can at

present lie determim,(l only l)y experinlent.

': t{efe)'e!me l0 slmws that th(! kinematic viseasity has an (,fleet on • in the

rel_i(llz xcry ('l-,_e to the wall, tlowever, th:tt offt,ct bt,eolnt,s iltll)ortallt ()lily

R)r heat i,r mass transfl'r at l'r:miitl or Sehmidt numbers al)I)reeiably greater

than I.

De'ermination of experimental constants.--The

constants n and r were determined from pip(: data
in which the properties were essentially constant.

Equation (5), with equation (8) or (9), was inte-

grated (constant properties and r) for the regions

close to and away from the wall in reference 4.

The molecular shear stress was neglected in the

region away from the wall, and the well-known

KSrman-Prand(1 ]og.'irithmic equation was ob-
tained in that region. In matching the two

solutions it was assumed that the velocity is con-

tinuous at the junction of the two regions.

The integrated equations (ref. 4) for the regions

close to and away from the wall are plotted in

figure, 1 with the constants n=0.109 and K=0.36

determined fi'om pipe data (refs. 4 and 14). The

data indicate that the equation for the r(,gion close
to the w_fll applies for y+<_26, and the equation

for (tie region away from the wall at)plies for

y+_>2('), hwlu(led in the phil are data for a low-

spee(l boundary lny(,r with zero ])ressure gradient

from referen(,e 15. The agreement with the c.urve
is satisfactory.

The vahies for the ('onstanls n=0.109 and

_--()36 shouht hi)lily to flow wilh variable as well

as cmsla)lt prot)erties if lhe basic assumptions

mat1, for • in the l))'('('('(tilig sections al)ply to

varilLbl(, i)rol)('rti(,s; that is, if •=,tu,,j) close to

the xall an(1 •=•((lu/(ly, d"u/'dy "e) a.way from the

wall The •otis(art( :1_,+ however, r(_quir(,s f,r-
ther consideration an(l is dis(utssed in the next

section.

ADDITIONAL ASSUMPTIONS

1i addition h) (tie assumpth)us for •(lily diffu-

sivity discussed in tile preee(ling so•lion, several

ad(tJtional assumptions must be mad(; for solving

equl_tions (5) to (7).

V_riation of properties with temperature.--For

gas(s, the viscosity varies apl)roximately as td,
whe:'e d has an average vahte of 0.68 for teml)era-
tllreg between 0 ° a ll(l 2000 ° F. The [)ran(lt,l

nuniber (I)r 0.73) and sI)e(qlic heat cp are as-

sumed coast.m(, because their varialions with

teni-)eru.l ure ave of it lower ord(,r of nnigniiude tlian

tim variations (:if 1[1(, other i)rot)erties, if Cp anti

])ra l(hl llunib0r are (,onsi(h,red eolistant., the

thel inal eon(lu('.tivity/: will vary vcitli tentperature

in the salne way a.s the viscosity, or as te. For

COn'Alfiilt l)resstll'e acl'o,qs the boun(lary layer, the

<lentil 3" p is itix'(,rsely lJrOl)Oi'(ioilal t,Og.
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30

25

where n = 0. I09

I I I J I[I
40 60 I00 PO0 400 600 I000 2ooo

Wall dislonce porometer, y*

FtaI:RE 1.---(h'neralized comlmlvd velocity distrilmlion for constant-I)rot)erly turlmh'nt flow (ref. 4) with constants in

equations deh,rmint, d from l)ipe data compared with data for low-sl)eed boundary-layer flow on a flat plate.

With the preceding assumptions, the property

ratios in equations (5) to (7) can be written as

p 1

pto t/t_

From the definitions of fl and t +,

(10)

(11)

t=l--_3t + (12)
to

or, if equation (7) rather than equation (6) is used,

t_=l--at+' (13)
t_

The property ratios in equations (5) to (7) can
therefore be written in terms of _ and t+ or a and
t +_.

Variations of r and q across boundary layer.--

The momentum equation (A7) indicates that, for

a flat, plate (zero pressure gratlient),

dr/dy=d(udu/tly)/(ly=O at the wall. Since r is

zero at the edge of the boundary layer, the actual

variation of r across the boundary layer might be

expected, in general, to lie between a linear varia-

tion (r/rto=l--(y/6)) and r/rto=l. Data on low-

speed isothermal flow over a flat plate (ref. 15)

show that this type of variation does exist, except
in a narrow region near the edge of tim boundary

layer. For determining the sensitivity of the
velocity or temperature profle to shear-stress

variation, it should therefore be smqieient to com-

pare the profiles for a constant and for a linearly

varying shear stress. Appendix J3 shows that

r/rto=q/qto for a flat plate if the Prandtl number is 1.

Figure 2 shows u + or T + plotted against y+ for
a Prandtl number of 1 for both a constant and a

linearly varying shear stress and energ3" transfer,
where T + is the total-temperature parameter.

Curves are shown for fl=0 and c_=0, 0.003, and

0.008, which cover much of the range of Maeh

number and Reynolds number of interest. The

equations for calculating the curves are given in

appendix D. The equation for the region away
from the wall was taken to apply for y+_30

rather than _26 when the shear stress was

variable, in order to give better agreement with the

data for constant properties. The curve for

a=0.008 is cut off at the point shown because the
Maeh number beeonles infinite, as can be seen
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fl'om equation (D3) (for _u+2--1). The curves

indicate that variable shear stress and energy U'ans-

fer have but a slight effect on the velocity and
tmnperature profiles. Similar curves were ob-

tained in figure 11 of reference 6 for _() and a=0.

Tile same conclusions shouhl apply to Prandtl

nunlbers differing slightly from 1, so that the

effects of the variations of r and q across tim

boundary layer are neglected for so|x'ing equations
(5) to (7).

Ranges of applicability of equations for flow

close to and away from wall. -It was determined

from the data for ('onstant l)roperlies that the

lowest value of !1+ for which the equation for lhe

region away from the wall applies is y_ =26 when

the variation of shear stress with y is neg]ecte(l
and the molecu]ar shear stress is neglected in tim

region away fi'om the wall. The question arises

as to how y_ varies when the prol)er(ies are va,ri-

able. The siml)lest assumption is that y; is

constant and equal to 26. This assumption, which

iinplies that the wall prollerties govern the thick-

hess of the wall hirer (y2 =--yP, r,z. pw/(#w/pw)), is

similar to yon K,:wm[m's assunq)tion (ref. 16).

Figure 12 of reference 6 shows that essentially the
same curves are obtained when the molecular

shear stress is negleeied ill lilt' region away from

the wall as when it is consi(h,re(], the difference
lleing thai, when the molecular shear stress is

inchMe(l, y? has the eonstailt vahm of 16 rather
than 26.

Another assumI)tion , which might tie somewhat

more reasonable than assuming y? constant, is

that y_+ occurs at a given ('onstant ratio of turbu-

lent to molecular shear stress _/(u/p). That is,

the turbulence changes from l h'it describc(l ])y

equation (9) to (ha( des(It|bed I)3- equation (8)
when the ratio of turbulent. Io molecular shear

stress reaches a cerlain "value. I11 this (',ase t,he

inore complete equations are use(l for the region

away fl'om the wall, in which the nmleeular shear-
stress an(| he'_t-lransflw terms are retained and

the slopes of (he (,qua(ions for ilow close to and

away from the wa]] are matched at y+ (y+--16
for/_--a-- 01.

In figure 3, u 4- or T + is l)]ot(e(t against y+ for a.

Pramltl number of 1 using the two assuml)tions
for Y? discussed in the l)re('e(ling lmragrqphs.

Curves are shown for /3=0 all(| a--0, 0.003, and

0.008. Tit(, equations for calculating the curves

are given in apl)endix C. The curves indicate
56S315. 60 --2

7

that the velocity and temperature profiles are
apparently insensitive to the assumption used

for y_7÷. Similar results were obtained in figure

13 of reference 6 for B#0 and a=0. The simpler

procedure of neglecting tile moh, eular shear stress

and heat transfer in the region away from the

wall and assuming yi_=constant=26 is therefore

a(topted in tile following ealcuhtlions.

Ratio of eddy diffusivities for heat and momen-

tum transfer.--In nmst analyses the ratio of eddy
diffusivi(ies a that occurs ill equalions (6) and

(7) is set equal to 1; that assuml)tion has given
heat-lransfer coefficients in good agreeiimnt with

experiinent (ref. 8). It is of inlerest that Prandtl's

mixing-length theory, w]fich assumes that a

turbulent i)artiele moves a given (listanee and

then suddenly inixes wit ll the fluid and transfers

its heat and momentum, gives a value of a=l.

A]though the actual turl)uh, nee mechanisnl may

be lllOre ('omp]icated than indieqted by that
theory, it does indicate that a wtlue of a on the
order of I is not um'easonable.

In the l)resent analysis the assumption of

a, 1 is retained, ]ml in St)lllC cases tilt' calcula-
tions are also carried out fl)r a=l.07 in order to

determine the effect of varying a. A ratio of

diffusivities of 1.07 was obtained from some pre-

limina.ry exl)erimen(s on r('covery fa(qors for
fully deve]ol)('(l flow ill a tulle.

VELOCITY AND TEMPERATURF DISTRIBUTIONS IN

BOUNDARY LAYERS

For obtaining velo('ily arm teml)erature dis-

trilmtions etose to the wall, eqtmlions (9) to (13)
are sul)stitt/te([ into equations (5) to (7). Equa-

tions (5) and (6) ])econw, in integral form, with

r/r_-- q/q,_-- 1,

• y+ ++ ( (ty
u ........................ (14)

Jo (l___t+)a+_+i_ .n3u+y+

og +

w+ (1+2¢_u)(lY +i
l+-J0 (1 --Bt+)d_t - a

O5)

----Pr .... --i ±t_ + '_?u+Y+

Equations (14) and (15) ('an lie solved sinlul-

taneous]y l)y iteration; that is, assumed n,lations
between u + and y+ and t+ and y+ are substituted

into (he right sides of the equations, and new
values of u + and t+ are caleulaled l)y numerical
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integration. These new values are then sub- shear stress and molecular h(,at transfer are

stit utcd into tile right sides of tilt' equations and negle(!led. Dividing equation (6) 1)y equation

the pro<'ess is repeated unlil the vahu,s of u + and

t+ do not, change appre<'iat)ly. Equations (14)

and 115) give the relations among u +, t+, and y+
for various wdues of a and _ for itow close to the

wall (y+_2(1). For 2=0 and a_(), t+ be('omes

infinite, so tlmt equations (5) and (7) must 1)e
used. These equations, with eqmtlion (13),
be(*ollle

,, y+

! __ ] --(5) gives, with r/rw--q:q_-- 1,

u+ (It +1+2 =a (lu-;

Integr.fling equation (18) from y_+ to y+ gives

t+ tC4 u+ u_+ `_ +2 '_ ui_

(18)

dy +

t+'=f (17), (1--cd+') _ 1
Pr + 1--at +' rb2u+Y+

(19)

From equations (11), (12), and (19),

1 (16)

(l_at+')a-_ 1--at +' .n2u+y+ p 1 (20)

':1-.,1+ -

Equations (16) and (17) are solved similarly t()

equations (14) and (15).
In the region away from tile wall, the moh,('ular

o Reference 17 !

(a=0.00176, --- i-

2182) __ _ .

55

50--

25

+

_20

E
o
L
c3
¢i

G
o

>

FIG I._RI'; -l.

Substitution of equations (8) and (20) into (5) and

one it_tegration give, for the region away fi'om

the wall,
- _ F- 2,.,++# 7

Ka d_t+ _,:_/_
df¢ =e

Ol 2 4 6 I0 20 40 60 I00 200 400 600 I000 2000 4000 I0,000

Wall distance paromeler, y+

(a) \:cIucity ([istribul on.

l'rt'dk'ted gt,m,ralized vt,hwilv and h_mperat ure (tisl ributi( ns for air with heal lransh,r and frictio]_al h(,al ing.

l'randtl mtml)er, 0.7 L
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By letting

_: F 2au + +/3 7 (22)z_-_= sin -I , . -.-_ -- =

and integrating equation (21),

l+a_, _ _

The constant 1-( is ewduatcd in tile usual way

by letting du+/dy+= ¢o at y+=0 in equation (21)

(ref. 7) and substituting 121) into (22) and (23)

at y+=0? By using this pro(:edure, K=0. To
determine/{_0, set 'u+=u + when y+=y_. Thtm,

This _k_Slllrlption (!D,n be avoided by illehll]irlg the iiloleeul_r Shear stress

e.ntI heat transfer ill the re}M/)i_ away frunl the wall alld e_,'allh'itillg K tly

_k_Sll[llillg It eoIltilltlOUS ve o ! I y tier v live If b'+ (fig. 12, ref. li), This tiSStllllp-

tion gives eSSelltially tile si),llle re.stilts o.s that nla(le ill tile text.

55----

5O

where z is given liy equation (22) and z_ is the

vahm of z at y{=26. E(lualions ('22) and (24)

give lhe relation between u + and y+ for various

values of a and 2. The quantity t+ can then be

cah'ulatetl from equation (19).

For ¢_=0 and a¢0, t+ 1)ecomes infinite, and

tv'=(/3/a)/+ must lie used. Equation (19) 1)e-
t_t)Illes_ ill |(Wills Of t+¢_

+2 7/,+2

(l a(l g

Equations (22) and (24) apply io the case for

¢_=0 anti a_0 if at?' is substituted for tilt+ in

eqlmlion (22).

For a=0, equation (23) becomes indeterminate,

and equation 121) for zero frictional heating from
refert,n('e (i ('an be used.

TypicM velocity and teml)erature distributions
for various values of the fri(qional-heating param-

eter a and of the heal-flux l)arameter /3 are

presented in figures 4 and 5. Positive values of

¢_correspon(l to heat addilion tt) the air; negalive

I

OI 2 4

FI (_ (r }g,E 4.----(_O _1 clu(Icd.

I

i

6 I0 20 40 60 I00 200 400 600 I000 2000 4000 I0,000

Woll distonce porometer, y+

(b) Total-t(,mperatur[, distrihuti(m.

l'r('(li(*ted _vneralize([ veh)cily and t('ml)('ratur(' distributions for air with heat Iransfi,r and

frictional ]waling. Prandll mtmlwr, 0.73.
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7OO

6OO

I00

6 I0 20 40 60 I00 2,30 400 600 I000 2000 4000 I0,000

Wall distance parameter, y+

Fmvt{_: 5.--])redicted temperature dislributiun for air with fri(.liumd heating_ n in._:ulatcd plale, l)ran(tll mmdwr, I).73.

values to heat extraction. The curves of u + In figure 4(t)), T + is plotted against y+ for

aguinsl .q_ (ti F. 4(a)) indicate considerable fiat- varim,s values of c_ and ft. The total-temperature

toning of the veh)cily protile as either _ or _ paran_eler T + is plotted ndher lhan t+, because

increases t,ositively. This is caused 1)y the the trm(ts ave somewhat more consistent, although

decreasing temperatures in tim oul('r regions of some crossing over (,t" lhe curves occurs even

the 1)(mnthu'y layer vOlnlmred with the wall xxith T +. For ('ah,uh,Aion I)Url)oses a better

temt)t,raltm, when either the Maclt mmd_er is rel)resentation can t)e obtained by 1)h)lting T +

high (high_)or lhelw.t transfer from the surface agaim! u+. The quantity T + is related to t _ l) c

to the air is high. Thus, the density is higher tl,e rc[ltliolt

• _-t- + Ot +2

in the (rater regions ,.)f lhe t_oundm'y la.yer, wilh 2 --t --_u (26)
consequent flattening of rite profile (eq. (5)).

Negative v,lues of _ lm)(hwe the opposite effect. SKIN-FRICT|ONCOEFFICIENTS
For certain combinations of _ and fl (witlt
negative), the effect of _ on the curves shouhl "|'h,' skin-friction coefficient is defined as

tend to cancel the efl'ect of _, and tit(, resulting (}_ 2r,,, (27)
profile should not differ grt4t/ly from the c_--fl:0 p_u_

curve. The curve for a 0.002, /_=--(1.05 in wher{ the suhscril)t (_ refers to values outside the

tigure 4(a) is close to the curve for c_-_=0, boumlary layer. Equation (27) becomes, in
Included in tigure 4(a) for comparison are experi- dimensionless form,
mental data from reference 17 for an o_of 0.00176,

¢J 0, and a corresponding Mach mmd)er Mt of (_=pw 2 2(1--a/_ ') 2(l--fl/_)
2.82. The data are in re_lsonable agreement with p6

the predicted profiles. For comparison with exl)erimental data, it. is
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convenient to introduce the momentum thickness,

_ P _( '_\0------J ---- 1----,dy (29)
• a Pa _,s #/,_/

which in dimensionless form is

_+ 1 u+( 1--_ dy + (30)0+= (1--at+') 1--at +' u[

Then tile Reynolds number based on the momen-

tum thickness and fl'ee-st,re_m properties is

Reo=- Ouam=O+u_ -g'_p-_ (31)
#a #a P w

where the property ratios are obtained from

equations (10) to (13). The Math number for a

t)erfeel, gas is

ua + I 2_
3I'=_R/a=u'* "_' i'y--- i )Tg/i> (32)

If values are given to a, /3, a,nd 5+, where fi+ is

10-2 i i _1 t W
Free-streom Moch number .

M_ t_

o i 1
I

®

g 10.3

g

g
B

i
E

too

2

i i 7!

Free-slreom

Moth number,

t_ 4.95

o 4.53
o 3.70
a 5.05

I0 -4- o 2.82
-- v 2.80

o 2.58
o 2.50

-- [] 2.46

-- o 0

tO2

Reference

23

2
2

24
17

252
I

26

27

I Irll

the value of y+ at the edge of the flow boundary

layer, then values of u_, t_, and so forth can be

read from curves similar to those in figures 4 and

5. Values of C l'f, _eo, and _l[_ can then 1)e calcu-

lated fi'om equarions (28), (31), and (32). This

proee(lure assumes that the thermal and flow

boundary layers are of equal thickness. From

the calculations in a later section, where relations

between boundary-layer thickness and (listance

along the plate are calculated, it can be shown

that this is a flood assumption for gases when the

thermal and flow l)oun(lary layers I)egin at. the

same point. For the ease of l>r=a= 1 the assump-

tion hohls exactly, as ('an t)e seen 1)y substituting

u+:T + into equations (42) and (43), which arc

then ident, ienl.

Predicted skin-friclion coefti('ients are plotted

against ]leo in figure 6(a) for various values of

i

I
,c_ iC

Momentum-thickness Reynolds number, Re 9

(a) Insulated plate; heat-tlux lmramcter _, O.

I
g

÷ •

(o)

ios

FI:](:URE 6.--\ ariation of 1)redict('d skin-friction coefticient with momcntun>thickncss ]{cynolds number and Math number

and comparison with exI)erimenl, l'randtl nuntl)er, 0.73.
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@

" r , , ,

102 t " - -- Free'-streomiMoch number, ! l --

, I

Reference

.-j

-4

10 -4
102 I0 5 I0 4 I0 5

]"l+; t Rt.: Ii. ('(mt'ha|{'d.

Momentum-thickness Reynolds number, Re 8

(])'; l,'l,,,, ().5.

Varitdi(m (,f l,r('di('t('[| skin-fri('ti,un ,_'(:,(,ili('i(.n v:ith tn()nt(,llttltTt-lhi(!klt(,s< ]{u'.+'n_t](t +, IlIIIlI.})('F _J.ll(|

Mm'h IltlIItl)('F tl. ll{[ (+Oml).+tris(m ',_ith (,×])(,rintet,t. ]>randtI mind)[,r, 0.73.

Nlu('h tmmM,r for "m itl_ulat(,<l l)hde (2 0).
Tlwst' ('ut'ves arc for ej,"e ++ I. The ('ffc('t ot_ the
('ttrves of (']mttging a to 1.()7 x_ts m'gligit)h'. The
valtws of (} d('('rcus_' ('()usi(hTal)lv a_ Nla('h
mmd)('r Jn('l't'+ts('s. ln('lu(h'<l in th,, l)h)t are
t'Xl)t']'il_ttt'llttt] (Ittttl or a nlllnl)t,r of [nvt'stigato]'+

(,)
for ._hl('h lllllll[)('rs tip to 4..),). In g(mtq'al, tlm

t[tlt_t _il't_ in good agrt,(,t|it, nt "+_.illt th(, ])rt,tli(q('(]

Clll'Vt'S.

'|'}w ratio or the rrh,th)n ('()(,ffi('i(,nt to th(, in-

('onq)ressihh, ('oefti('icnt is plotted against _[;t,ch
ntll||})el" for various values of ]h'0 for fl--:0 in Jlgtl]'e

7(tL). Tire vahws of ('/('r.+ (h+,ct'(:asewith /D0,but
at a (lc('r(,asitlg rat(,. For (-oral)orison l)t£rl)oses
the atmlytical (mr're of ()/'('r.+ against A[+ for a
value of Ih_o of 6000 is l)h)tte(l in tlgure 7(b)
together with data hd,:eu near this value of l_eo.

If he_t transfer ()('curs })etween the ])late and
the stream, it is convetfient to specify the ratio of
tit(' a.ctttal wall temperature to the adi_d)a,tic wall
temlwrature for a given Mach nunflwr and R+)e.

]"()r all itJstllat(,(l plat(, the a(lia})uli{: wall t(,ml)er.-
aturc t my t)e written as

t_., t+--V 2% (3;_a)

w}wre +7is the teml)erattn'e-r(,(:overy facl,,r, the
cuh'uh_ti(m of whi(.h is di+,.+cusu(,d in t}t(' m'xt

sc,qiot+, l':(tuati(,]_ (.:;3a) can ])e written Jtt <]ituun-

si(mles ; fol'ln _tlS

._t,,.+_ 1 (;;;;t))

Figure {_(t)) is simila,r lo figttr(, 6(a), ¢,x('ep! that
the ph te is n(r_v cooled (t,,,,,t,,,+- tl.5). The trcmls
are shfilar to those of tlgure 6(,,), but all the
cttrves arc disphwed upward. This hwreast, in
friction; coefficient was also otda, ined for tlow in a

tube v, ith ('ooling (yef. 5). Also incht(h,d in this

figure +ire wind-tumwl data (ref. 1£) obtaitw(I at,
high _lach ]mml)er using nilrog(,n as the working
fluid. The a.grecment with theory apl)cars to 1)e
within experimental error.
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,,...4
(.o

(a) l
I

0

Momentum _thickness

Reynolds number

Reo

1_
I

:10 4

, I0 5

Reference temperature

for /?% = 10 5 .... J

I

2 4 6 8 I0 12 i4 16 18

Free-stream Mach number, M 8

(a) Various values of m()nt('nturn-lhi(,kness ]h,ynohL.. numl)(,r: insulated t)]at(,; h(,nl-flux Imram(,l(,r fl, 0.

]:I(:URI.] 7. Varialion of (':(':,_ wilh .Ma(,h mlrnber and (,om])aris(m with (,Xl)(,rirm,nt,.

2O

1)r_u.ttl numher, 0.73.

Figure 7(c) is simil_r Io [i_ur(' 7(_1) but is for a

v_duc of 0.5 for t,/l.,_. I1 is of int('rest lo note from

boih tigm'es 70l) _lr.l ((_) thai lhe p(,r(!entng(, (,fr(,(,t

of v_u'ying Reynolds numl.,r is lnu('h grenl(,r for

the higher Ma(,h nulnl)(,rs. Thus, figtire 7(11,) in-

di(:ates tirol f()r a ._ltt('h nUln])er of 20 1}t(, v+llu(, ()f

(:,,(':,+ f<)r Reo of 10 s is less thall tmlf 1}ml for II,,o

of 10:L

REFEREN(?E TEMI'ERATIIRES AND EXTENSION OF RESULTS
TO GREATER COOl.IN(; RATES

TI_o (|(,lining equntion for r(,f(,r(,n('(, l(,nll)(,rnlure

is

t*--:,_-t-(_(t.. /_)+l)(t.,,, t,,,) (:_4a)

'.VII(w(, (_! _1,11(| 1) 'll'O ('OIISlfllll, 'a, |O })e (_V_tl]ll._l[('(l fl'Ol/l

lheor(qi('al or (,xl)(,rimel_l_/1 results. 1)ividing
eqtmtion (34a) 1)y la and assuming thal the re-

('()very f_lclor is ('on,qlnlit _tt ().££ lln([ thai 7= 1.40

resull in _t mar(, useful form of lh(, (,(Im_tion:

'*_ (I--(')+F((_--I)1_+I)-1 (l-+0.176.,1_)
15 ' ¢1w _

A(',(,ordi.g to th(, ('on('(.t)! of r(.fer(,.('e lelilp(,rtt,-

[ tit'(', t ]10 r(,lalion b(q w(,en in(;Oml>r(,ssil)le fri(qion

factor and Reynolds numl)er shouht hohl for

vnriabh_-property tlow if lhe l)rol)erti(,s are evalu-

_lt(,(I at, the r(,feren('c h,ml)(,r_tture. Th(' r(,sulls of

this analysis couht not be represenled accurately in

surh a nmnn(,r. ]i was necessary to write the
in(_ompr(,s:ible r(,lalion in the fi)rm

E
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0

Momentum- thickness

Reynolds number, . __ _ __

Ree

2O

where If is a ('ot_staHt. It shottld be ltotcd thnt+

this i,,+not the true ilwoml)r_,ssil)le relatiotl and is

used only fo]' roi't,rt,nve tenq)ex'_/tu]'c pttrl)os(,s. If

the l)rol)orties are evMtmted ut the t'(,f(,r(,n('e

tt'Illl)et'ttttll'e, the l'OStl|t is

1+- (" /*')-u'_'TS(
I/,; ";_ \t +

l)ividi.g' lid+ equation })': Ilia t)l'evious Ollt, _'ivt,+

( ', _ t *_- o.s,,+
• \{t/ (341))(
f,i 5_

For ]_)+'0of 1()_, evaluating the ('oustants Canal D

in the ret'creu_'e teml)t'r_tttu'o ('(Itmtiou from the

results in tigut'es 7(n) and (c) atM cqtmtion (34]))

gives ('--0.5(i and I)_0.184. The reference tcm-

l)(,z'_Htu'e can then l)e "writt(m

_--O.44 + (().376 _-[-O. 184)(1-_ 0. t 76+'1+)(34(')

The j',stflts of the use of equ'ttiot_s (34b) tl,_(t (34c)
tu'e st owtt _is (lashed litte,_ iti figtu't's 7(tt) _ind (c).

Thus, t)y use of eqtmtions (34t)) and (34e) i1.
shottl, l ])(' l)OS,'+ible lo extetl<l the r<,sulls of this

atmlyds it)vahtt+s of t,./t .... other ttmu 1.0 and 0.5
if tht, vMtw of/_+0 is near 1()'+.

Au t,stimat(, for lower l¢ext_()hls t_uml)t,rs ntuy

be ob aine(l ])y first usit_g tht, l)r(,ceding method to

fittd tte friction f_tctor _tt/5 0+-+I(V' _tt_(l then fitM.ing

th(, rtltios of fri(qitm factor tit tlw ([(,sire(I lh,yt_ohls
t_tttl_b:'r to tlmt "it ]_o :-I() _ from ]]guros 7(_:t) and

(c). ']'[tese ratios t_ttt| tht.tl ])o it_terl)olatt'd or ex-

trtq)<fat(,d to the desired "vMu(, of t,/t .... This pro-
('(,dur. (+at_ be justiii(,(l, slaw(, the ratio does not ",tory

gret_tlv with t,+/t,,,,.

+TANTON NUMBERS AND REC()VER¥ FACTORS

'Fit<+Stanton numl)er based on the dill'ertmce be-

tween the wall and the adiM)at i("wall t(,mperature,
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with properties evaluated at (he free-stream tem-

perature, is given by

l-----
h, 1

st -=........ t_ :_5)

P u, _c

where equation (33a) is used. The tenqwraturc

and density ratios arc determined from equations

(ll) and (12) or (13). ForB----Oanda¢0, equation
(35) })eeonles indeterminate. For that case set,

1--(tdt_):at[' and t{:(a/[3)t_'. With these

substitutions equation (35) ])e(!ollles

St=
oOl_(O_/pw (t], rl_t]2i (36

From equations (7) and (5) (q/q,_=r/r,_= 1),

t;'-- _ F _+- d!/+
a/ k 1 p
J,, ,w/P u,

f_+ _2u_ dg+ _ _ (37)+ ,!i./+;oi0,
The set'end integral in lhis equation can lm re-

Iflaeed by (ti_'),q=0. But equation (33a) can be
written in dimensionless form as

_u_- (t,_)_=0 (38)

Subsliiuting equations (37) and (38) in(o (36),

with (he second integral in equation (37) replaced
by (/g")_=_, gives

1
NI: -- _+ (39)

"_ L; 1,- i pJ0 k,_i,r,, + p,; a_,,,,:o,,,

For evaluating equ.ttion (39) i_l the region close

to the wall, e/(u,./p,.)--K2u+y +. For the region
away fi'om (he wnll, e could be obtaim,d fi'om

equation (S). However, it is more convenient to

obtain e from equntiotl (5), which for the region

away from the wall l)eeomes

g ¢ 1

E; 2L- d ,,9i@

culated from equations (39), (32), (33b), (30), (31),

and (10) to (13).

Predicted Slant,on mmabers are plotted against

Reo for various Mach numbers for t_/t.,_=l in

tigure 8(a,). The case of tl,,/t_.,--1 is n limiting

case that can be appronche(l as closely ns desired

by making the heat flux small. When t.]t_,_= 1,

there is no effect of variable properties due to

heat thtx. The St anton llllln])ers in tigm'e SOt)
show trends similar to those of the friction coetli-

cients in figure 6(tr). lnchuh_'d in the tlguxe are

experimental datn for low heat tlux obtained by
a number of investigators. In general, the data

arc in good agreement with the pr(_(tiete(I curves. 4

The curves in tigm'e 8(a) are for %,I_ a--1.

Similar curves for 'm a of 1.07 were 3 to 5 I)er(,ent

higher for n Math number of 0, but the differen('e

decreased at. high(w Maeh mtm|)ers. The curves

for a--I arc in slightly betlcr _rgreement with the
(lata than those for a= 1.07.

The ratio of S(anton numl)er to the incoml)ress-

ible Stanton mmll)(,r is I)lotted agains(Nl:ud) )ram-

her for various values of Reo for t,/b,,_= 1 in figure
9in). These curves are very nearly (he sam(, as

those for C/Cz.i in tigm'e 7in).

Figure 8(t)) is similar to tigure Sial, execpl thai
t,_/t..,--O.5. As was tim ense for the fri(.tion

eoeIIieienls in figure 6(})), the St,mien numbers

increase as t_/t_,, (le('renses. The correspomling

plot of St/Sh against Math mmd)ev for various

values of Reo and t,,./t,,,.=0.5 is shown in tigure
(,)(1)).

TenH)erature-rec, overy factors, as cah'ulate(l

from equation (38), are shown in tigure 10 for
Math mmabers from 0 to 8. <'tlrves nre sllowll for

a_l an(la=1.07. The curves fora--1.07 are in

somewlml better agreeme/H, with most of tim

experimental (lain |hll.ll those for a=l. This
does not mean (hat an a of 1.07 should 1)(, used

for c'dculating hen( (ransfer or Stanton mmd)evs.

According to l{ei(_hardt's h)l)olhcsis , the value of
a should be eh)se io I at the wall and i)wrt,nse

with distance from (he wall (r(,f. 12). The

temperntm'e I)roliles for eah'.ula(ing heat-tl'az_sft,r
eoeliicients are very steel) ne.lr (he wall, so (hat

the iinl)Ol'tant changes with distance take I)laee
near the wall where a is close to I. In the ('ase

Equation (39) can be use(1 for _--0 or _#(). For

given values of 5+, c_, and /3, values of S(anton

number, Maeh mmd)er, t,#'t .... and Reo can be eaI-
5(;_317_ 60 ,'I

I In [). recent work, 'l'rSss (ref. 34) ex0,qlded the l)resent analysis to tile ease

of mass lransfer for a Sehmidt number of 2.5. The results were in very good

agreement with experimental data for sllblinlation mass transfer of naph-

thalene from a flat plate to air at Maeh number from 0.5 _o 3.5.
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_02
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E

c

g
g

10-3

12

16

20

(a

i0-5
i02

Free-stream Reference

Moch number.

4,f8

a 2.4 28
o 2,27 29

< 1.69 29
I. 50 30

" 0 31

.... _ h • .

iO3 IO4 iO5
Momentum- thickness Reynolds numbe_, Re e

(it) ]llsulall'([ plat(,; h_,at-[lux pa 'am,,tur _, O.
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c(mtl_arisot_ with eXl>_'rimunt, l>ram tl numbs,r, (I.711.
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of recovery factors, however, the 1)late is insulated,

so that, tht: temperature gradient is zero at the

wall. Tit(, gradients neon" the wall will therefore
be sm_dler than in the case of heat tnmsfev, anlt

imporhmt changes of temt)erature with distance

might o('('ur in regions away fi'om the wall where

a is somewhat greater than 1.

Figures ll(a) and (b) show the curv(,s of the

Reynolds analogy factor 2SI/Cz _lgninst Maeh
number for various Reo, for t_/t,,,, equal to 1.0

and 0.5, r(,spe(qively. If lieynohls' amdogy held

strictly (Pr--a-:l), the Stanton numl)er would

l)e e(lmd to one-lmlf the fl'iction fll(qor mid

-')_/( r wouh[ })(' unity. Figure Ii shows a V_ll'i_].-

(ion of the R(,ynoh|s _1)mlogy fa(:(or over the range

1.0(i5 to 1.280. In gt, n(,r_d, 2Nt'(_z i)wreas(,s with

in('r(,asing M_wh mtmb(,r and wilh (le(weasing
l{(,vnohls numl)er an(l in('r(,as(,s slightly with

(h,(,r(,_sing t,...."t.... _lt the higher .\hwh numl)(ws.

Th(,se r(,sults m'o in approximate agreement with

those of Rubesin (ref. 19), who estimate(l that

2St/Cf would ])e in the range 1.1,_ (o 1.21 tl(. least

u 1) to .1[_ of 5.

[)rand(l

To ebtain approximate values of St as t_functio)l

of Reo "m(l 211, for t,,/t_ other than 1.0 and 0.5, it

is recommende(1 that the results of figure 11 bc

inlerpolate(l or extral)olate(l (o give the value of

2St/Cl at the (lesired (.ondition. Th(,n C/ van

t)e foul(l from e(lua(ions (34b) "rod (34(;) _ls l)r(,-

viousl? (lescribed, and (hus the value of St is
obtain _,t.

RELATION BETWEEN BOUNDARY-LAYER THICKNESS AND

DISTANCE ALONG PLATE

]:ro]a the resul(s given in the preceding sections,

the sl, in fri(:lion or heal transfer for _l given

l)oun(l_ry-lnyer or monl(,)dum thickness ('_m l)e
('alcul_t(,d. ]n or(l(w (o ('a]('uhtte t.h(, r(,lalions

l)etw(,( n thermal or flow boundary-layer thi('kn(,ss

and (li,_(anc(, along the plate, the w,,ll-known

inl(,gn] momentum and energy (,qua(ions may
l)e us((l. Th(,se (,quati(>ns may be written as

follow: for a flat. l)hm, (zero pressure gr_l(li(,n():

(1 /"
= (b- Jf [Pu ( u_-- u )(Iy| (401" t/J

([

['_ [c_,pu(T 7'_)(171]
qw= ;lJ o,,

(41
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If _--_h=O for :,::0 and equations (40)and (41)

are integrated with respecr to :_, they become, in
dimensionless form.

, l 'tl r/_,,. 1 i._+ ]L(',:I P_/_ _d 2 u+(,u__u+)dy +
,Jo Pw L#_ tl_ • o Pw

(42.)

P,,, //._ _'] , P,c

--7'+)(171 _] (43)

where the bravkel for lhe upper limit of inleKra-

tion refers lo 1he value of the varial)h' of int(,gra-
tion at. l]mt point,. These equalions give ihe

relations ])el ween 6+ and Re_: and 6_, and R_.

The t)rolwrt,y ratios are obtained from equations

(10) to (13).

Equation (42) can be writ.len in the more
convenient form

lle:=2jl'% d [leo-(_- (44)

The l{eyn(4ds numb,q" based on mom,,nlum

thickn(,ss ]leo is t)h)tte(l '_gainsl Ibm., as found from

equation (44), for an insulat,,d t)htte in tigure 12(a).

The value of Ib'o ,h,creases at a _ziven R,.,. as the

Math numl)(,r incr(,'lses if the frce-,_tream proper-
ties remain constant. This is caus(,d (e( t. (44))

}))" tile dec.l'ellse of friclion factor wilh inc,'easin K

5lath nmnl)er (ILK. (i(a)). l)alq in('lu(h,d in

figure 12(a) agree reasonably wen with the
a mdvlical curves.

l:igm',, 12(1)) is similar 1o iigure 12(a) (,x,'el)t

that t,,,,q,,,.().5. For _ziven valu,.s of lb, a n(l Math

number the values of l_'co are gem,rally a little
hiEher for t,,v/t.... of 0.5 than for t,,,/7,,,, of 1. This
lren,I can be understood fi'om ,,xaminalion of

equation (44), since (_ is higher for t,,/t,_ of 0.5

(fig. 61t))) thqn for l,_t_,_ of 1.0 (ilK- 600).
Prt,(li('tect skin-friclion coefIi('ients for an insu-

lated plate are 1)lotted against Re_ in tigure 13(a).
The trends with N[ach numl)er are similar to

l,hose obtained when ('s is plotted against Reo
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Momentum - thickness

Reynolds number
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I

I

I

16 18 20

]"l{;Vl{).: II,- I)r('di('I('(| variatio)l (>f ]{(,',')l(4d> atlalo_zy fmqor wilh t)t()fmmlum-thi(,km,s,,< ]{(,yl)old.s mm)l)(,r a)l(] Maeh

numl)(,r, l))'afMll nu))tl)<q" ().73.

bul are ]e._,_ ])ro)_oun(.(,(l, ])e(_au_(, the |)()un(lary-
iav(,r t}fi(4.;m,ss at a _'iv(m x ([(,('r(,as(,s ",%ith i)wr(,as-

ing 3[)wh numl)(,r. EXl)('rim('))tal (la(a for h)w-

Sl)('(,(l lh)w in('ht<h,(I in th(, l;_z'ur(, are in _zoo(I

a_t'e(,men( "_xith tim l)r(,(li_.((,(l <'ttrv(, for a Nlach

lltnllb(.q' ()f zero. Data for hi_zher hIa<'h Ilumbet's at'(,

also izt reas()mt]flc a_zret'tm,nt with the pre<li('tcd
curves but are som(,what more s('atler(,(I than ih(,

(laia in liFm'(, (;(a), wh(,r(, (': is l)h)lt('(l aFains(
R:_. rl'his scatter is al)l}ar(m(ly ('nus(,(I I)-,- un(,er-

taitdy as 1o the l)oinI at which the l)oun(lary
]ayer actually slavls in a SUl)(,rso)fi(. lh)w.

]It figure 14(a) lhe (heorcti('al curv(,s are re-

ph)l((,d as ('_,'(_._ against Math numl)(,r for
various l{eynol(Is numl)(,rs 1)a,_(,4 on x. The

efl'e(:L on (_j'(_, _of varyi):g Re, ])(!comes appr(,('ial)h:
at high Math llun]l)urs.

Stanton ]ltlln])("FS for }kll insulate(t plate arc,
plot, ted againsL Re, for a Ninth Ilt)lll])(q" of 2'i,,I'o

in figure 15. Curves for higher Math numbers

and for t ,,,"t (,,,, of 0.5 i)_w)Ive (,onsid(,rM)Iv more
('ah'ula(i())t and w(,rc not ob(ain(,(l.

Fig'u)'(,s 13(])) a)_(I 14(b) are anah)_ous (o

li_Zm'(,s 13(a)an(l 14'a), r(,sl)(,(:tiv(,ly , (,×(,(,l)t, thaL
they are for t,,,,:'t_,,, of 0.5. The frhqhm fa(qors, a_

(,xp(,('((,d, are hi_her for the laqzer rat(,._ of voolin_Z.

REFERENCI_ 'I'E._,|I)ERATUI{E FOR Re= RESULT,"4

The CtlslOlll)irv lls_,, ()J[" _l ref(,Fell('(, ((!lll])(,l'Ii[lll'e

('o)w('l)l r('<luir('s l[lal the I{('yr_()hls )_uml)(,r

(h'l)('nde)_c(' of ()and of ,%'t I)(, the sam(, for all

Maclt nutitl)(,r._ so that ('r,"('/,_ at_(] N//NIi sht)uld

nol h(' fu)wli()ns of l{('ynohls numb(,r. ]C×;_mim_-

(ion of (h(,pre(li('te(lcurves ()f(_/('._.,and N//Nt_

agains( Ma('h ))uml)(,ras shown in li_zm'('s7(a),

7(c),(.),and 14 ._hows,however, (hat ('/('_._and

,S'l/',_l_are strong furi(qions of I{('ynol(ls hunll)(,r at

lh(, higher Math mmfl)(,rs. Th(,ref(we, lh(, l)rese)d

t.heory cannot l)(, ]'eI)r(,s(,)_((,(] accural(,Iv l)y (me
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reference teml)erature valid for all lh, vnohls

lllinlbellS.

For I)urposes (if eonll)tU'ison , howew,r, lhe

results o])tainell tiV using ],cl,;erls suggested

referenl!e tellil)el'allll'/, (ref. 3) lll'e sh/iWll in

1_gtlre 14. A_zi'(q'lllelil. with the preselil iheor 3"

for /le_ 10 s is ([uite good. Use of Eckerl.'s

r.(s._refi,ri,nl'e (('llll)erllAllre ni(,tho(l Io solve for (' " '

is reeoninieil(h,d, then, if lai'ge vlihle,_ (if /::'x (nelir

108) are considered. In or(ler to solw ' for (_, ihe

vahie of (_y,i ca.li ])(' lilkell from |he ('lll'Ve for

J[$--0 lit figure 13(a). All apl)i'oxillli/lillll (wilhin

5 percent.) to this case is

Cs=().0292 lies °' 1'_1

In or(h'r 1o solve for vahies of C: a( vahies of

t_/t_ other than 1.0 and 0.5 and for wdues of Re,

other than l0 s, the same apt)roximate procedure
as reeoImnended for l_eo as the varial)le can be

employed. For this case, however, i stea f

2O

Prandtl

figures 7(a) and (e), figure 14 and E('kert's refer-
oliee 1elni)el'il.l ill'e should t)e ill ilized.

To ol)tlihi llll i/])])roxinla.te rehllion b(,tween

Stlinioli lltlnll)er ail(t A><', the following procedure

is l'e(!Olllillel/(le(l: Fin(l the vahl(' (if ]7¢0 ('()lTe-

s[)on(iing lo the Sl)C<'ified lie, 1)y inl(,rpohttion or

extral)ohilion of tigure 12. Vl'Olll this vahl(, of

17<.ofind t]le ]{eynol(is analogy fn('lor 1)y sinlilar

llse of _iglll'(, I I for the st)('('iti('(l values ()f f,_,/t,w

and .11,_. This vallle (if lhe Revnol(ls llilalogy

factor all(l in(" value of (_: ol)llliited llS silOWll in

(lie l)r('vious t)llrligrllt)ti i/re sufth'ient to solve for

the Sli/)llon nllliil)er for (lie specified con(litions.

(_I,()SIN G REMARKS

No at.t.enq)( ]las been nia(ie in this analysis to
include the effects of (tissociaiion, shock waves,

radiidi(in, slip tlow, or inihi('ed presslll'(' gradients.

A rough esliniale of the (,fleet (if disso('ialion

Inilv })(' hiferre(l, as pointed out I)y E('kert (ref. 3),

from the theory of laminar 1)oun(hlry layers.
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Thus, both Crown (ref. 20) and .Moore (ref. 21)
conclude tlmt t he effect of dissociation oil friction

factor and heat flux for tile laminar boundary

layer will be small if the wall temperature is less

than the air dissociation temperature, which, even

at a pressure of 0.0001 atmosl)here , is above
3000 ° F. Their eal('ulations were made for Math

numbers up to 20. Where dissociation is appre-

ciable, it. is recommende(l that the heat-transfer

coefficients presentc(l in this report be interpreted
as based on an enthall)y (liffer(,nce instead of a

temperature difference. Thus,

and

h-_ c vq

H_--I[_

St= q

where H is the enthalpy.

Although in practice there would be a shock

wave originating near the leading edge of the

fiat plate for high .Xlacil numbers, the effect, on

temperature and pressure distributions appears
too complicated to be taken into account. There-

fore, constancy of free-stream pressure and tem-

perature has been llSSllnled.

The possibility of encountering slip tlow at high
Math number must also be considered. Accord-

ing to Eckert (ref. 3), the assumption of a con-

tinuum is wdid a,s long as the Knudsen number

servative estimate foe the r_mge of conditions

consi(lered in this rel)or( , values of :ll_ and I_e_

of 20 and l04, respectively, ave us(,d. For these

values the Knudsen number is 0.0029& which is

well |)elow the criterion for slip ttow.

SUMMARY OF RESULTS

The following results were obtained from the

analysis of tm'tmlent flow and heat transfer over

a fiat l)late at high Math numbers:

1. The frictional heating that occurs at high

Maeh nuinbet's produ(',ed a flattening of the

velocity profile, as does heating the l)late t)y other

means. Cooling the plate caused the velocity

gradients near the outer edge of the boundary

layer to increase.
2. The skin-friction coefficients and Stanton

numbers at. a given Reynohls number decreased
as .Maeh numl)er increased.

3. The curves for the ratio of fri('tion coefficient

to the incompressible coefficient against Math

nunlber agreed closely with the curves for the
ratio of Stanton number to incompressible Stanton

number against Math numt)er.
4. Cooling the plate to offset the effects of

frictional heating increased the friction coefficients
and Stanton nunlbers.

5. Frictional healing at. high Maeh numbers

pt'odueed n thinning of the boundary layer at a

given position on the plate for the same fi'ee-

sir(ram prol)erlies.

6. The t)redieted friction coefficients and Stan-
ton numbers agreed ch)sely with representative

expert mm it al d a ta.
7. The Reynolds number effect on both friction

factor and Stanton nulnl)er in('reas(,s greatly with

incre_lsing Math number.

LEWIS ]{ESEARCH CENTI'H¢

NATIONAL AE1_,ONA'UTICS AND _PACE ADMINISTRATION

(!LEVELAND, ()HIO, Janur*rp 17, 1:,58



APPENDIX A

DERIVATION OF TURBULENT MOMENTUM AND ENERGY EQUATIONS

MOMENTUM EQUATION

Tile monwntum equation for compressible

l)oun(tary-layer flow past a flat plate tall be written
as

Ou_ Ou 0 (bu) (A1)p,, -a;a=b,7,

and tile eontinuity equation as

aCpu). __(p_,)=a
bx -- by v (A2)

from assuming that the laminar and turbulent

shear stresses are of tile same order of magnitude.
The seventh is consistent with the sixth, since a

triple correlation should be roughly of the mag-

nitude of a double correlation raised to the 3/2

power The eighth appears justified since it might

be expected that k' and/_' should be at least one-

half order of magnitude less than _ and _.

With the preceding criteria, the time-averaged

momentum equation becomes, on neglecting terms

of magnitude _ and less,

Time (h,rviatives and pressure gradients are

negle(qed in equations (All and (A2), as they drop
out when time averages are taken.

The instantaneous quantities in equation (All

are now replaced by their tim(, averages and

fluctuating components, which are written as

u= i7+ u' p= _+p' ",( (A3)f-

v = _ + v' _,=_+_,' J

amt time averages are taken term by term. The
following order-of-magnitude criteria are used for

t)oth the nminentum and energy equations:

5
5_--00)

_,_,_ _o(1)

_-,; = 0 (_)

_t'r', p' r', etc. _0(/_)

p'u'd, p'u '2, etc. "_" 0 ([_ 3i2)

Double correlations containing k' and _'--_0(_ a)

Tile tirst tlve of these criteria are the usual

tmundary-layer assumptions. Tile sixth resulls
28

and t,t e continuity equation,

Considering the relation

(A4)

m

77÷ p' v' =7 (A6)

equations (A4) and (AS) can be rewritten

__bE ___ b f 0ff -_.'rr--7\

and

Ox Oy

Compwison of equations (A1) and (A7) leads to
the dehfition of r as

_ bE

r ._--pu'v' (A9)

ENERGY EQUATION

The energy equation for compressible tmundary-
layer llow past a flat l)late is

Ot , Ot O [k Ot fo,,,,fuc, _+p,c, ou= 0_ \ \_! (A10)

/)(P'/) =0 (AS)
by
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Time derivatives and pressure gradients are

again neglected, as time-averaging cancels them.

If tile nlomentum equation (A1) is multiplied

through by u and then added to equation (A10),
tile result is

71 2

bt

--by by} (All)

where cp is considered constant.

Again substituling for the instantaneous quan-
tities the sum of the time-averaged and thwtuating

components, and then neglecting terms of small

order of magnitude on taking time averages,

equation (A1 1) l)ecomes

- b I -. _2\

Again employing equation (A6), equation (A12)
becomes
-- b _ _2 -- b / -. _2\

--_--b (_c by-t-_u _--p pb7_- _)_ e v,t,--puu,V,) (A13)

A comparison of equations (All) and (AI3) leads

t,o tile definition of q as

q___(_: bi __ b71 : ...... uu,v,"_+uu b_--p,'_,_, , p ) (A14)

It should be noted that this treatment gives

no density fluctuation terms in the expressions
for r and q. This same result was found by

Van Driest (ref. 22) and by Rubesin (ref. 19).

(!oml)ining p'v-'-7 with p_, and writing tile sum as

pc I)resent no (liiliculty, l)e(;ause, in a complete
solution, pv eouhl l)e eliminated from the momen-

tum and energy equations t)y the equation of
contimlity. An assumption for p'r-'7 would be

neeessary only if it were desired to calculate'7'.



APPENDIX B

PROOF THAT __r q FOR Pr a=l
T_

In terms of eddy diffusivities, tile nloinenlum

attd energy equations nmy be written as follows:

__ b_7_=.;r,, b/i b [ il)_-] (B1)

-o,/E (_+;_'_') o_/+"(;+_) _j (B'_)

The energy equation (II2) can t)e rearranged to

read

-- b c.t+_--o,,_)_: +.,, _ F,,t+v)

E - (hi=/)!/ l,,.+p,a_/y (eft)+(;4 J*)6} (B3)

For t'r a=l, equation (]_3) becomes

-- _ ( - 'h -- b ( - _)P" b.;: c,/+2- +P_' o:/ c'/+V

If equalions (BI) and (B4) are each solved for

p_'_ and the results e(tuale(| , tllere is o])tained

_-1 -- _

0 _ ( hi0 --pc q,t-F_-_) o v c,,t + V a!1 -
0 I - _'-"x

o,,.t","

The assumption is now made thab

c j+ I()'=ZI_ @ B
2

30

(B5)

(BO)

q_

The exl)ression given t)y equation (B6) for

_ ._

%t-4-_ is substituted into the right side of equa-

tion (135). Since the right side becomes identical

with the left side upon this substitution, equation

(136) is a valid relation.

The constants A and B in equation (B6) are

evaluat,,d as follows: At y=O,

_=0, t=G, B:c_,

._=_,- _j=q.,_= _

With tie constants l[lUS evahmted equation (:B6)

become_ ((lropl)ing the bars for convenience)

,?/2

c,t-F_= q'_u+%t,_ (B7)

If equa:ion (B7) is made dimensionless, ib becomes

simply

u + = T + (B8)

l)revio_ sly obtained relations for r/rw and q/'q_o

ape

_,_, \#u, P., ]_u,/P_/ dy +
(5)

q w 1 /'u" Pw
_.,_o _) dt+a dy +

a . # p _ du +
__O__t,, (#_.--Jr"Pu,#tr/P_) (|y---- + (6)

If use i_ ma(le of equations (:B8), (10), and (26)

and the fqct that Pr: a 1, the resulting e(luation
can be :'edu(,e(l to

q r (B(,))
qt_ Yw



APPENDIX C

VELOCITY AND TEMPERATURE PROFILES FOR CONSTANT RATIO OF TURBULENT TO MOLECULAR
SHEAR STRESS AT y+ AND WITH MOLECULAR SHEAR STRESS AND HEAT TRANSFER INCLUDED

IN REGION AWAY FROM WALL (Pr=l)

Tim equalion for velocity profile used near the

wall is equation (16), where 1--cd+'=l--au +2 for
/)r=l atut k_0 (see e<ls. (BS), (26), and <lefini-

tions of t + and t+').

Previously, lhe expression for r/r_ was shown
lo be

r _ du ++ p _ du +

and far from the wall (eq. (8)),

Combining equations (5) and (S) an,l assuming

constant shear stress across lhe boundary layer

give

kd:J 4} | 't" +

\(:ty+'-'/J

variations of density and viscosity widlThe

tempera! ure are

(C2)f
p t_ /

j

For Pr:a=l and 13--0, the temperature ratio is

expressed a,s
t

--= 1--c_u +2 (C3)

Suhstitution of equations (C2) and ((_3) into (_1)

yields

1= (1-_ +_),,_+ ___+_/,t!!,+.]_ / d,/;
\d !1÷2/j

Solving for dh1+/(ly +_ gives

(Fu+ --K \d ?I_/

If a change in varialdes is made as

(l _l +

V=(ly-_

equation ((_5) can be integrated to give

i 5+ K(]_ +

The solutions for u + as a function of y+ can l)e

obtained ])y a process of iteralion. Assumed

values of v for a given increment in u+ arc sul)-
stiluted into the right side of equation (C6) until

it equals the left side. The relation between u+

and y+ is then ealeulaled from

" u+ (|,_1+y+= ((;7)
0 - _'_

From equation (B8), u+= T + for q/q_--r/r_, so that
the relation between T + and y_ is also known.
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APPENDIX D

VELOCITY PROFILES FOR LINEAR VARIATION OF SHEAR STRESS AND ENERGY TRANSFER

ACROSS BOUNDARY LAYER (Pr=l)

Because the variation of shear in tim thin region

near the wall is negligible, tile same equations are

used in the l)resent case as were used in appendix

C.

From equation (5), the equation for r/r,_ far

frmn t lie wall, neglecting the viscous stress, is

r p e du +

r,_ p,ou,,/p_ dy +

The expression for e/(u,,/p,,) far from the wall is,

fl'om equation (8),

\dy +_J

For a linear variuiion in shear stress,

r,_ _+ (D1)

(_omhiifing the fiwcgoing equations yields

:fdu+'V

1 :l+ ,, t,aca-q

\ii_+V

I. I{ill)(,sin, Morris _V., May(low, l{an(hlll C., and Varga,

_l(,V[,ll A.: ._lll Analytic,al ;ilia t']xperinlontal In-

vt,sti,iaiilin lif the Skill Friction cif l}l(! Tlll'titlh_Ilt,

]{OtllidliA'y ],ayl,r Oil li_ El:M. Pl'llo aL _l]+l(",'S') i0

Speeds. NA('A TX 23(15, 1951.

'2. ('oh,s, I)oliald: M(,;tsuv(,ui(,iiis in the lloululary Layer

on & Sin(loin lqai l'lalc in Sill)el'sOlli(.' How. llI--
.'k|t,:lSllr(_,n(,Ill.,4 ill :l ]qai-Plalo Pioundary L.lyor :it
lhe ,h,i Propulsion l,al)oralory. Hep. X+o. 20 71,
,h't Prop. I,ab., ('.[.T., ,JIIIIt' |, 19F)_. ((IOIlll'tt/'t

•"<'_'l). I).%. 01 -t95 ORI) IS, 1)epi. Arniy, t)r(t. (!I)I'IiS.)

3. l']ckerl, l']rnsl. 1{. (l." _tlrx'oy Oil ltl,al Wl'lillsf(w "it,

lligh Slil,eds. '['('ch. I_ep. 5-I 70. Aer[). H,cs. lmh,,
\VA])(', Apt, 1954. (('olllritcl, No. AF 33(616)-
'22 -I. )

4. ])cisslcr, l{,ol)(!rl (l.: Analytical and Exp(!rim('nlal In-
vesli_itlion (if .tdiatvtiic Tlirblllenl, How in Slnool.ti

Wtlbt's. N'.:'l(!.t TN" 213S, l!i50.

5. l)eissh,r, 1{. (i.: Invoslig'liion of TIlrbuh.qit, Flow :tnd

32

For fl=0, Pr=a=l (r/r_=q/q_),

t 1--au+2= p-_- (D3)

Substituting equation (D3) into (D2), rearrang-

ing, and taking the square root of both sides give

d2u + __ _ \dy + ]

(ly +2 _t,"l--au+21J7 y+a+

(D4)

I,etting v=(lur/dy + in equation (I)4) and inte-

grating give

/_L+ i2 ,'_V+ -1--i'u+- d _7"
,-/ I -%_'l--att '_,L+'I..... i + --

c=v_e _ a+ a+3,,_ ,' (1)5)

Equatiou (DS) can be solved t)y iteration for 5=0

and it giveli a a.nd (_+, to give u + as a function of

(D2) y+. From equation (BS), u+= T + for q,"7,, r/r,,,
so thaL the relation l)(%wecn T + iind <y_ is also

knowll.

REFERENCES

ll(,:t Tr:tllsfi,r in Slnoolh Tul)es, Including t.he
Eft ,i,ls of Variatlh, Fhlid Pr(ip(!rlil,s. Trails. ASM E,
vol 73 ll(), 2, F.t). 1951, pp. l(il 107.

(i. ])(qSS ('i', 1{.. (_.: [[(!:lt, Tr:tlisfllF llllti Fluid Friction for

Fill y l)(,_,'_,]()l)l,_'! Tiir'imhmt. Flow (if Air and Siipcr-

erii eal _,Vltll,r wil}l Vttriable Fhiid Pr[q)erlii,s.
Traus. ASME, x-[)l. 76, no. 1_ ,Jail. 1!t5-I, pp. 73 85

7. von ]_llrlil(i, li_ Th.: TIIrt)li](!llCC ztn(| Skin Fricl,ion.

,lout'. Aero. Sci., vol. I i1o. 1, ,liin. 1!13-1, pp. 1-20.

8. l)eissl.% 1{. (;., ltlift l']ittil, (',. S.: Alialylil'itl Itll([ ]+]x-
pl!ri'nenlat ]nvl,sli_ttlion of Fully I)evelol)l'd Tur-
ll)lll1111 Fl.w of Air in it i_lll()()t,}l T/lilt! with Hi!at

Tl'lLISflq' wit, h Varial)h. Fluid Prop(wiles. N'A(IA
"l'N" 2l)2(.l, 1!)5'2.

9. I)eissl,r, Ih)b_¢t (L: Turbuhml ]lear Transfer and

Fri(tion in t,he l']ntranc(_ lh,gions of Snioolh Pits-

sages. Trims. ASME, vol. 77, no. g, Nov. 1(,)55,

pp. 1221-1232 ; discussion, p. 1233.



ANALYSIS OF TURBULENT FLOW AND HEAT TRANSFER ON FLAT PLATE AT HIGH MACH NUMBERS 33

10. Deissler, Robert G.: Analysis of Turbulent tteat

Transfer, 5lass Tn_nsfer, and Friction in Smooth

Tubes at ttigh Prandtl and Schmidt Nunfl)ers.

NACA Rep. 1210, 1955. (Supersedes NACA TN

3145.)

11. Deissler, R. G., and Loefficr, A. L., ,Jr.: Turbulent

Flow and }Ieat Transfer oll a Flat Plate at lligh

Mach Number with Variable Fhfid Properties.

Paper No. 55-A-133, ASME, 1955.

12. Reichard{, If.: Fundamentals of Turbulent lIcat

Transfer. Archiv f. d. g(!sanlte Witrmetech., no.

6/7, 1951, pp. 129 142.

13. Goldstein, S., cd.: Modern Develol)mcnt in Fluid

I)ynamics. Vol. II. Clttrendon Press (Oxford),

1938, p. 351.

14. Laufer, John: The Structure of Turbulence in Fully

])cveloped Pipe Flow. NA(!A ]b_p. 1174, 1954.

(Supersedes NACA TN 2(,)54.)

15. Kleb'tnoff, P. S.: (_haract(,ristics of Turbulence in a

Bound-try I,aycr with Zero Pressure Gradient.

NACA Rep. 12-17, 1955. (Supersc(h,s NACA TN

3178.)

16. yon ](_irm,4n Th.: Tim Pr(dd('m of I{esis!anc(_ in (!om-

pressible Fluids. l(eale Ac('ad. (i'h'tli't (I¢ome), T.

XIII, Sept.-Oct. 1935.

17. Mon'_gh:m, R. J., and ('(Ioke, .l.R.:Thc M(!,'tsur(mmnt

of tIoat Transf_r and Skin Fib'!ion at Soporsonic

Sp(,eds. Pt. IV. Tests on a Flat Plate at 3I =2.82.

Tech. Note AEI{O. 2171, British RAE, ,!row 1952.

18. lIill F. 1(.: t_oundary-l_ay(,r M(.asurcmcnisin IIyp(_r-

sonic Fh)w. Jour. Aero. Sci., vol. 23, no. 3, ,hm.

19.5,q, pp. 35--12.

l(`k YiubeMn, Morris W.: A Modifi('d l_vynolds Amdogy

for the (_ompr(,s._il_h_ Turl)uhm! ]_oun(l:try Lay(,r (m

a Fl'tt Plat(!. NA(!A TN 2!)17, 1953.

20. ('rown, J. ('.: Tim l,aminar Bour.l:,ry l,ay(,r at, ]ty-

t)(,rsomc SI)( (,cIs. NAV()RI) /{el). 229!}, Naval ()rd.

l_'d)., Apr. IS, 1952.

21. Moor(_, L. L.: A SohHi(m of the L:_mina.r l/i)lmdary-

Layer 1' lualims for tt (OlH)Icssi'th_ Fluid with

\'ariahl(! Prop(,rti(,s, lnlc.htdin_ l)i:sot'iati(nl. Jour.

A(_ro. S('i. vol. I!L no. S, Au_. 1952, pp. 505 51_.

'2'2. V:m I)ri(,st, 1';. R.: Tm'lmh,nt BomMary I_a.w.r in ('om-

i)r(,ssil)lc Fluids. .hmr. Aoro. S('i., vol. IS no. 3,

Mt_r. 1951, pp. 1-15 161.

23. I,obb, R. t(enneth, Winkler, Eva M., and Persh.

Jerome: Experimental Investigation of Turbulent

Boundary L:_yers in tlypersonic Flow. Jour. Aero.

Sci., vol. 22, no. l, Jan. 1955, pp. 1-9; 50.

24. Brinict b Paul F., .rod I)i_conis, Nick S.: BomMary-

Layer Development and Skin Friction at Mach

Nmnber 3.05. NACA TN 2742, 1952.

25. St)ivack , t[. M.: Experiments in the Turbulent,

BomMary Layer of a Supersonic Flow. Rcp. CM-

615 (AL 1052), Acrophys. LM)., North Am. Avia-

tion, Inc., ,l'tn. 16, 1(.)50.

26. Mon.tghan, H.. J., ,rod Johnson, J. E.: The Measure-

mcnt of tteat Transfer and Skin Friction at Sul)q!r-

sonic Speeds. Pt. II. Boundary-Imyer Measure-

merits on a Flat Plate _tt 5I=2.5 and Zero ltcat

Transfer. C.P. 64, British ARC, 1952.

27. Schultz-(;runow, F.: New Frictional R(,sistanc,e Law

for Smoottl Pl'_t(,s. NA(_A TM 986, 1941.

28. Shwk, Ellis G.: I':xp(,riment'd Invest ignition of IIeat

Tr:msfer Through L,_minar and Turbulent Bom,dary

L*tyers on a ('onled Flat Pl'm, ._t a Math Nmnbcr

of 2.4. N3.CA TN 2686, 1952.

29. Pal)pas, C. (k: Measurement of lh,at Transfer in the

Turbulent I_omMary I,ayer on a Flat l'lat(, in

Supersonic Flow and (!Oml)aris(m with Skin-Frict ion

]¢esult._. NA(_A TN 3222, 1954.

30. l_hnmons, M. A., Jr., and Bltmchard, R. F.: Prelimi-

nary I||vcsiigation nf lhe Transf(q" of Ileal from -_

Flat Plate at a Math Numb(,r of 1.5. NACA I{M

l,SllI31, 1951.

31. ,la('(}l_, Max, 'rod !low, \V. M.: l[(,_t Transfor from :_

(_ylindrical Sm'fa('o 1o Air in 1)arMlcl Flow with

•tin] withoof [7_tboat.('t] S[:triil_g S('('tilms. Trims.

ASME, vol. (iS, no. 2, Feb. 19-16, 1)p. 123- 134.

32. l)haw:m, Salish: I)iro('t Mvasur[,lm,nts of Skin Fri('-

lion. NA(!A 1¢[,1). 1121, 1953. (Supers('d(,s NA(!A

TN 2567.)

33. ]([,npf, (hmth(,r: Ncuc l'h'_O)nissc d[!r Wid(,rstands-

forsclmng. \Vorf!. l((q,dcr(d tlaf(m, B(I. 10, June

1929, pp. 234 23!!/ 247 253.

3-1. Tr_i.ss, Oh!v: Sublimati(m .Mass Transf(,r Thrlmgh

Compressible t{oun(lary l,ayers on a Flat Plate.

Ph. 1). Thesis, M.I.T., Sept. 1958.

U.$, GOVERNMENT PRINTING OFFLCE:I960




